Lecture 10 More Aromatics

From Lecture 9

Erich Armand Arthur Joseph Hückel 1896 - 1980 Arthur Atwater Frost 1909 - 2002

Hückel's Rule for Aromaticity

- **To be Aromatic ...a compound must :**
- 1. be Cyclic
- 2. have one P orbital on each atom in the ring
- 3. be planar or nearly so to give orbital overlap
- have a closed loop of 4n+2 pi electrons in the cyclic arrangement of p orbitals

Hückel's Rule

Among planar, monocyclic, completely conjugated polyenes, only those with $4n + 2\pi$ electrons possess special stability (are aromatic) Magic Numbers 4n+25 5 2 $\left(\right)$ benzene! 6 1 10 2 3 14 18 4 Chemistry 328N

Hückel's Rule

Actually and inadvertently defines a condition for cyclic molecules in which the bonding molecular orbitals are filled and there are no electrons in non-bonding or antibonding orbitals roughly analogous to the "rare gas" condition for atomic orbitals...

π -MOs of Benzene

6 π electrons fill all of the bonding orbitals all π antibonding orbitals are empty

Hückel and Pyridine

Hückel and Pyrrole

Huckel and Furan

Recognizing Aromatic Compounds Be careful with Huckel's Rule

Some Nomenclature

http://www.word-origins.com/definition/benzene.html

Please read about naming in Chapter 21!

Some Nomenclature

Please read about naming in Chapter 21.3. Many substituted benzenes are so old and so common that they have been given "nick" names!

IR spectrum of toluene

IR

Benzene rings--substitution patterns

Unreliable with NO₂, CO₂H subs

From Crewes, Rodriguez and Jaspars, ch 8

Out-of-plane bending *combinations*, quite small, but in a normally clean region of IR. Reliable even with nitro or carboxyl substitution

If the region between 1667-2000 cm⁻¹ (w) is free of interference (C=O stretching frequency) a weak grouping of peaks is observed for aromatic systems. Analysis of this region can lead to a determination of the substitution pattern on the aromatic ring

Ring Current in Benzene Circulating π electrons **Deshielded** Secondary magnetic field Bo generated by circulating π electrons deshields aromatic protons

CH328N Exam I Spring 2018

Name_____

5. (<u>pts</u>) These figures from the book show field induced electron flow in the pi system of an alkyne and an alkene. The captions state clearly that the arrow designates induced *electron flow*. Are These figures accurate? If not why not??

Applied field, B_0

NMR Spectrum of Toluene

[18]Annulene

18 π electrons satisfies Hückel's rule

resonance energy = 418 kJ/mol

bond distances range between 137-143 pm

nmr Spectroscopy

• Ring Current effect is massive in the larger annulenes, for example for [18]annulene

the six hydrogens on - the inside of the ring resonate at δ - 3.00!! <u>Up field of TMS!!</u>

the twelve hydrogens on the outside of the ring resonate at δ 9.3

Coupling Constants - Aromatics

NMR Spectrum of 1-iodo-4-methoxybenzene

NMR Spectrum of 1-bromo-4-ethoxybenzene

THE p-DISUBSTITUTED PATTERN CHANGES AS THE TWO GROUPS BECOME MORE AND MORE SIMILAR

Phenols

 The functional group of a phenol is an -OH group bonded to a benzene ring

Phenol

Phenols

Cresols

La Brea Tar Pits

Phenol

Joseph Lister 1827 - 1909

A British surgeon and a pioneer of antiseptic surgery, who successfully introduced carbolic acid (now known as phenol) to sterilize surgical instruments and to clean wounds, which led to reducing post-operative infections and made surgery safer for patients.

Carbolic Acid Antiseptic

Acidity of Phenols

 Phenols are much more acidic than aliphatic alcohols that also contain the -OH group

Phenol:
$$pK_{\overline{d}} = 9.95$$

 $OH + H_2O \longrightarrow O + H_3O^+$

Ethanol: $pK_{\overline{a}} = 15.9$ CH₃CH₂OH + H₂O - CH₃CH₂O⁻ + H₃O⁺

 delocalization of the negative charge by resonance stabilizes the phenoxide ion relative to the alkoxide ion

Lets move electrons together!!

PLEASE FOLLOW ME STEP BY STEP

Acidity of Phenols

- Strong acids have weak conjugate bases
- Stabilization of anions leads to weak/stable conjugate bases!

Acidities of Phenols

- Part of the acid-strengthening effect of -NO₂ is due to its electron-withdrawing inductive effect
- In addition, -NO₂ substituents in the ortho and para positions help to delocalize the negative charge by Resonance

Acidities of Phenols

 Nitro groups increase the acidity of phenols by both an electron-withdrawing inductive effect and a resonance effect

Acidity of Phenols

- Alkyl and halogen substituents effect acidities by inductive effects
 - alkyl groups are electron-releasing by "induction"
 - halogens are electron-withdrawing by "induction"

Finally....Chemistry!!

$A + B \longrightarrow C$

Synthesis: Alkyl-Aryl Ethers

- Alkyl-aryl ethers can be prepared by the Williamson ether synthesis
 - but only using phenoxide salts and alkyl halides
 - aryl halides are unreactive to S_N^2 reactions

Alkyl-Aryl Ethers

 S_n^2 reactions are accelerated by:

- polar aprotic solvents
- phase transfer catalysis
- crown ethers

Remember: methyl > 1^0 > 2^0 and 3^0 is a no go! {Review chapter 8??}

Reactions at Benzyl Carbons

Benzylic Reactions

- Benzylic radicals (and cations) are easily formed because of the resonance stabilization of these intermediates
 - the benzyl radical is a hybrid of five contributing structures

Benzylic Bromination

Bromination proceeds by a radical mechanism

Flash Card Tricks

Allylic and benzylic bromination with NBS

electrophilic bromiation of alkene to compete